The University of Jordan

Faculty: Pharmacy
Department: Pharmaceutics and Pharmaceutical Technology
Program: BSc. In Pharmacy
Academic Year/ Semester: 2013/2014 (Second semester)
Course Name (Course Number): Physicochemical Principles of Pharmacy (1202134)

Credit hours	2	Level	1	Pre- requisite	0303101
Coordinat or/ Lecturer		Office number		Office phone	
Course website		E-mail		Place	

Office hours					
Day/Time	Sunday	Monday	Tuesday	Wednesday	Thursday

Course Description

Study of the physicochemical properties of molecules incorporated in pharmaceutical preparations.

Learning Objectives

The student will be introduced to the physico-chemical characteristics of drugs and allied entities. In addition, the student will be provided with the knowledge and how to apply the fundamental physicochemical principles to the design, formulation, manufacture and evaluation of a wide range of dosage forms.

Intended Learning Outcomes (ILOs):

Successful completion of the course should lead to the following outcomes:

A. Knowledge and Understanding: Student is expected to

A.1. To understand the following basics of the physicochemical properties of drugs such as:

Intermolecular forces, States of matter (gas, liquid and solid). Phase equilibria and phase rule, Physical properties of drug molecules.

A.2. To understand the concept and factors affecting solubility an distribution phenomena.

B. Intellectual Analytical and Cognitive Skills: Student is expected to

B.1.Conceptual understanding that enables the student to evaluate critically the principles physical pharmacy all aspects of scientific activities and theories intended to be applied in aspects related to characterization, preparation and understanding of drug formulation.

B.2. have an ability to deal with complex issues both systematically and creatively, and to assemble, assimilate and analyze critically a range of information including both scientific data and library-based.

C. **Subject-Specific Skills:** Student is expected to have:

C.1. A systematic understanding of knowledge to interpret and evaluate information related to the physicochemical characteristics of drugs

C.2. A comprehensive ability to differentiate between properties of solutions of electrolytes and nonelectrolytes.

D. Transferable Key Skills: Students is expected to

D.1.The ability to work effectively both in an independent manner through self-direction in planning and implementing tasks, and also as a member of a team following discussion and agreement of procedures.

D.2. The ability to disseminate information effectively both orally and in written form both to specialist and non-specialist audiences.

D.3.The independent learning ability required for continuing professional development.

12 Obt Dear ming and D talaanon filemous			
ILO/s	Learning Methods	Evaluation Methods	
	Lectures and Discussions, Homework and Assignments, Projects, Presentation,	Exam, Quiz, assignments.	

ILOs: Learning and Evaluation Methods

Course Contents

Content	Reference *	Week	ILO/s ^{**}
Intermolecular forces.		1 and 2	
Ionic bond, coordinate bond, covalent			
formers			
forces.			
States of matter.		3-5	
• Gas state: definition, properties,			
Ideal gas law, Real gas			
behaviors and law.			
• Liquid state: definition,			
properties, vapor pressure,			
boiling point.			
• Pharmaceutical aerosols:			
liquefied gas aerosols and			
compressed gas aerosols.			
• Solid state: Definition and			
properties, arrangement of drug			
molecules in the solid state			
(amorphous form, crystalline			
form and polymorphism) and its			
effect on melting, solubility and			
dissolution. Studying of solid			

state using differential scanning calorimetry (DSC).		
Phase equilibria and phase rule. Liquid-liquid binary mixtures, liquid- liquid ternary mixture, solid-solid binary mixtures.	6 and 7	
Mid Exam	8	
Physical properties of drug molecules. Dielectric constant, Dipole moment, Polarization, Refractive index.	9	
Solutions of nonelectrolytes. Properties of solutions, concentration expressions, equivalent weights, ideal solutions, real solutions, colligative properties, molecular weight determination.	10 and 11	
Solutions of electrolytes. Electrical conductance, equivalent conductance, colligative properties of electrolytes, Arrhenius theory of electrolytic dissociation, theory of strong electrolytes, the ionic strength, the Debye-Huckle theory, osmotic coefficient, osmolality and osmolarity.	12 and 13	
Isotonic solutions. Measurement of tonocity, calculating tonicity using Liso value, methods of adjusting tonocity.	14	
Solubility and Distribution.	15 and 16	

Solvent-Solute interaction solubility of	
Solvent-Solute Interaction, solubility of	
gases in liquids, solubility of liquids in	
liquids,	
solubility of solids in liquids, solubility	
improvement, distribution of solutes	
between two immiscible solvents.	

^{*}Mentioned below.

**Mentioned above.

Evaluation

Evaluation	Point %	Date
Midterm Exam	30	8 th week
Assignments	10	4 th week
Quiz	10	10 th week
Final Exam	50	17 th week

Main Reference/s:

 Martin's Physical Pharmacy and Pharmaceutical Sciences. 6th Edition. 2011.
 D 11: 1 - 11. Line in the William & William USA.

Published by Lippincott Williams & Wilkins, USA.

http://thepoint.lww.com/Sinko6e

- Martin's Physical Pharmacy and Pharmaceutical Sciences. 5th Edition. 2006.
 Published by Lippincott Williams & Wilkins, USA.
- Physical Pharmacy, Physical Chemical Sciences, A.Martin et al., 4th Edition. 1993.
 Published by Lea and Febiger, USA.

<u>Other references:</u> Some Basic Reading References:

 \bullet Physicochemical Principles of Pharmacy by A.T. Florence and D. Attwood. $4^{\rm th}$ Edition.

2005. Published by Pharmaceutical Press, UK.

• Pharmaceutics, The Science of Dosage Form Design by M.E. Aulton. 2nd Edition.

2002. Published by Churchill Livingstone, USA.

• Pharmaceutical Calculations. Howard C. Ansel and Mitchell J. Stoklosa. 12th Edition.

2006. Published by Lippincott Williams & Wilkins, USA.

 Bently's Text Book of Pharmaceutics, by E.A.Rawlins, 8th Edition, 1984. Published

by EI, BS.UK.